STUDIES ON THE MECHANISM OF ACTION OF GILVOCARCIN V AND CHRYSOMYCIN A*

Sir:

While evaluating a new antitumor prescreen, we isolated a species of Streptomyces arenae which produces an antibiotic complex containing a new antitumor compound, 2064A. This same antibiotic was also discovered recently by two separate groups of researchers and was designated toromycin by one¹⁾, gilvocarcin V by the other²⁾. Gilvocarcin V was reported to be active against a number of experimental tumors³⁾. Our 2064 complex was detected using a biochemical version of a prophage induction assay (BIA)⁴⁾, a test for agents interacting with DNA. We wish to report on the mechanism of action of gilvocarcin V (2064A) and a closely related BIAactive compound chrysomycin A, which differs from the former only in its sugar moiety⁵⁾.

Fermentation of *S. arenae* and purification of 2064A were performed as previously described⁶⁾. Our chrysomycin sample, obtained from an original stock^{τ}, was assayed by HPLC to be 95% chrysomycin A.

The viability of *Bacillus subtilis* ATCC 6633 log-phase cells was monitored during treatment with these compounds. Both drugs demonstrated

a minimum inhibitory concentration (MIC) of $0.5 \ \mu g/ml$ with this organism. Bactericidal activity was likewise exhibited by both drugs; at least a 1000-fold decrease in viability of *B. subtilis* occurred within 5 minutes of exposure to each drug at twice the MIC.

The effects of gilvocarcin V and chrysomycin A upon macromolecular synthesis were likewise studied in *B. subtilis*. Log-phase cells were grown in the presence of labeled thymidine, uridine, or valine to monitor DNA, RNA, or protein synthesis, respectively. Gilvocarcin V inhibited DNA synthesis earlier and to a greater extent than RNA synthesis (Fig. 1). Protein synthesis was the least inhibited under these conditions. Chrysomycin A at twice the concentration of gilvocarcin V demonstrated similar patterns of inhibition.

Activity in the BIA test is normally associated with a compound's ability to initiate DNA damage⁴⁾. Intracellular DNA degradation due to drug exposure was assessed. The DNA in growing *B. subtilis* cells was labeled with [³H]thymidine (0.5 μ Ci/ml), the cells were resuspended in fresh drug-containing medium without isotope, and the label remaining in DNA was monitored. There was no detectable effect (Table 1) upon cellular DNA for either gilvocarcin V or chrysomycin A at concentrations two-

Addition (μ g/ml)		% Degradation ^{†*}			
		30 minutes	60 minutes	90 minutes	120 minutes
None		3.7	2.5	8.4	3.8
Streptomycin	50	0	2.4	0	0
Nalidixic acid	50	2.1	19.3	23.0	30.8
Gilvocarcin V	1 7 50	$ \begin{array}{r} 1.8 \\ 12.5 \\ 4.5 \end{array} $	3.6 19.1 28.9	8.7 26.6 31.5	3.7 26.6 44.6
Chrysomycin A	1 7 50	0 2.9 0	8.3 11.5 5.2	6.5 9.6 6.8	0 0 0
DMSO, 2%**		0.5	2.8	1.8	1.3

Table 1. Effect of gilvocarcin V and chrysomycin A on B. subtilis DNA in vivo.

 Data are a composite of two experiments in which controls contained 32,700 and 44,400 TCA-insoluble CPM at time zero.

[†] % Degradation = $\frac{\text{(TCA-insoluble CPM at time zero)} - (\text{TCA-insoluble CPM at time x})}{\text{TCA-insoluble CPM at time zero}} \times 100$

** A final concentration of 2% DMSO was used to solubilize the 50 μ g/ml solutions of gilvocarcin V and chrysomycin A.

Presented in part at the 21st Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstr.
 55, Chicago, Nov. 4~6, 1981

Fig. 1. Effect of gilvocarcin V on macromolecular biosynthesis in B. subtilis.

Cells were grown to early logarithmic phase in minimal medium supplemented with D-glucose and casein at 4.0 and 8.0 g/liter, respectively. Additions of 12 μ Ci of [¹⁴C]uridine, 13 μ Ci of [³H]thymidine or 25 μ Ci of [⁸H]valine were made to 60 ml of medium. Gilvocarcin V was added to each flask 12 minutes after isotope addition giving a final concentration of 0.5 μ g/ml (\triangle) or 1.0 μ g/ml (\bigcirc). A separate flask without drug was used as control (\Box). At appropriate times, a 1.0 ml sample was withdrawn and mixed with 1.0 ml of 10% ice-cold trichloroacetic acid (TCA). Acid insoluble materials were collected on glass fiber filters (Whatman GF/A), washed twice with cold TCA, once with 95% ethanol, and dried. Radioactivity was determined in PCS scintillation fluid (Amersham).

Fig. 2. Agarose gel electrophoresis of CCC-φX174 RFI DNA titrated with gilvocarcin V. Electrophoresis in tris-acetate (pH 7.8) buffer was through a 1% gel at 48 mA for 18 hours.
One μg of DNA was mixed with increasing concentrations of gilvocarcin V. A~J: 1, 2, 3, 4, 4.5, 5, 5.5, 6, 10, 30 μg/ml, respectively. K: Drug free control. L: *Pst* I-digested φX174 RFI DNA (indicates the position of linear duplex DNA). M: Same as L+4 μg/ml gilvocarcin V.

fold higher (1.0 μ g/ml) than the MIC. Extensive DNA degradation did occur after 30~60 minutes when the concentration of gilvocarcin V was increased to 7 and 50 μ g/ml. No measurable DNA degradation was elicited by chrysomycin A even at concentrations as high as 50 µg/ml. One cannot exclude the possible initiation of occasional interruptions in the DNA molecule by chrysomycin A which would not be detected under the conditions of this experiment. Both antibiotics, however, demonstrated a rapid bactericidal effect and strong BIA activity6) at significantly lower concentrations. This suggests that the in vivo DNA degradation observed exclusively for gilvocarcin V must be unrelated to these other activities of the drug.

The *in vitro* interaction of gilvocarcin V and chrysomycin A with duplex covalently closed circular DNA (CCC- ϕ X174 RFI) was evaluated by agarose gel electrophoresis (Fig. 2). Under our conditions, the order of anodal migration of the various conformational forms of DNA was: 1) CCC-DNA, 2) linear duplex (L) DNA, and 3) nicked circular (OC) DNA. As the gilvocarcin V concentration was increased, a diffuse DNA band with reduced mobility appeared while the CCC-DNA band decreased in its intensity, suggesting intercalative binding of the drug to DNA and a reduction in CCC-DNA superhelicity. At concentrations of $4.5 \sim 5 \mu g/ml$, CCC-DNA formed a sharp band with a mobility al-

most equal to that of OC-DNA, suggesting that all negative superhelical turns had been removed. A diffuse band migrating between OC- and CCC-DNA again appeared at even higher drug concentrations, indicating supercoiling in the opposite direction. Chrysomycin A behaved similarly except that a totally relaxed conformation and winding of the CCC-DNA in the opposite direction were not observed, even at very high concentrations. This may suggest that the specific steric properties of chrysomycin A limit further binding to CCC-DNA when a particular drug concentration is exceeded. No DNA damage of CCC-DNA was apparent with either drug.

Since these compounds are readily altered chemically upon exposure to light^{4,6,7)}, their capacity to elicit photoactivated DNA damage was investigated. A mixture of gilvocarcin V, at a concentration above that required for complete superhelical relaxation, and CCC-DNA was irradiated with incandescent light. With increasing exposure to light (Fig. 3), the OC-DNA band intensified as the diffuse DNA band decreased (channels $C \sim J$). Similar results were obtained with chrysomycin A (data not shown). When drug was irradiated prior to mixing with CCC-DNA (channels K and L) a decrease in relaxation of superhelical twists was observed exclusively. It is likely that the OC-DNA band contained primarily nicked circular DNA since material from this band did not return to a negative Fig. 3. Agarose gel electrophoresis of gilvocarcin V-CCC- ϕ X174 DNA complex under conditions of photoactivation.

Electrophoretic conditions were the same as given in Fig. 2. One μ g of DNA was incubated with 8 μ g/ml gilvocarcin for 30 minutes and then exposed for various times to a 25 watt incandescent light source 25.4 cm above the test solutions. A: drug free control. B: drug free+7-hour light. C: complete (DNA+drug) without light. D~J: C+0.5, 1.0, 1.5, 2.0, 4.0, 5.0, 7.0 hours of light. K: drug+5-hour light, followed by incubation with DNA for additional 30 minutes. L: same as K, except 7-hour light.

A B C D E F G H I J K L

superhelical state after sustained exposure to light (channels $H \sim J$). This capacity to initiate DNA damage *in vitro* under special conditions may be related to the action of these drugs in living cells.

Acknowledgement

We wish to thank Dr. ULRICH WEISS for supplying samples of chrysomycin complex.

Tena T. Wei Kevin M. Byrne Dana Warnick-Pickle Michael Greenstein

NCI-FCRF Fermentation Program NCI-Frederick Cancer Research Facility Frederick, Maryland 21701, U.S.A.

(Received December 5, 1981)

References

 HORII, S.; H. FUKASE, E. MIZUTA, K. HATANO & K. MIZUNO: Chemistry of toromycin. Chem. Pharm. Bull. 28: 3601 ~ 3611, 1981

- TAKAHASHI, F.; M. YOSHIDA, F. TOMITA & K. SHIRAHATA: Gilvocarcins, new antitumor antibiotics. 2. Structural elucidation. J. Antibiotics 34: 271 ~ 275, 1981
- Могімото, М.; S. Окиво, F. Томіта & H. Marumo: Gilvocarcins, new antitumor antibiotics. 3. Antitumor activity. J. Antibiotics 34: 701~707, 1981
- ELESPURU, R. K. & M. B. YARMOLINSKY: A colorimetric assay of lysogenic induction designed for screening potential carcinogenic and carcinostatic agents. Environ. Mutagen. 1: 65~78, 1979
- WEISS, U.; K. YOSHIHIRA, R. J. HIGHET, R. J. WHITE & T. T. WEI: The chemistry of the antibiotics chrysomycin A and B: antitumor activity of chrysomycin A. J. Antibiotics (to be submitted)
- 6) WEI, T. T.; J. A. CHAN, P. P. ROLLER, U. WEISS, R. M. STROSHANE, R. J. WHITE & K. M. BYRNE: Detection of gilvocarcin antitumor complex by a biochemical induction assay (BIA). J. Antibiotics 35: 529~532, 1982
- STRELITZ, F.; H. FLON & I. H. ASHESHOV: Chrysomycin: A new antibiotic substance for bacterial viruses. J. Bacteriol. 69: 280~283, 1955